Sintesis Enkapsulasi Ekstrak Kunyit (Cursuma longa. L) Berbasis Karboksimetil Kitosan sebagai Penghantaran Obat indonesia
Isi Artikel Utama
Abstrak
Kurkumin merupakan senyawa bioaktif utama dalam kunyit (Curcuma longa L.) yang memiliki aktivitas antioksidan tinggi, namun penggunaannya terbatas akibat kelarutan rendah dan stabilitas yang buruk pada kondisi fisiologis. Penelitian ini bertujuan untuk mensintesis dan mengkarakterisasi nanopartikel enkapsulasi kurkumin berbasis karboksimetil kitosan (Cur-NPs) sebagai sistem penghantaran obat yang lebih stabil. Sintesis dilakukan menggunakan metode sonikasi, sedangkan karakterisasi meliputi analisis PSA dan uji stabilitas pH. Hasil menunjukkan bahwa Cur-NPs memiliki ukuran partikel sebesar 281,3 nm dan PDI 0,3897, menandakan distribusi partikel yang homogen. Cur-NPs menunjukkan stabilitas yang lebih baik dibandingkan ekstrak kunyit pada berbagai pH (2-10). Hasil ini menunjukkan bahwa enkapsulasi menggunakan CMC mampu meningkatkan stabilitas dan efisiensi pelepasan kurkumin dalam sistem biologis.
Unduhan
Rincian Artikel

Artikel ini berlisensi Creative Commons Attribution 4.0 International License.
Referensi
1. F. Zahir-Jouzdani, F. Mottaghitalab, M. Dinarvand, and F. Atyabi, “siRNA delivery for treatment of degenerative diseases, new hopes and challenges,” J Drug Deliv Sci Technol, vol. 45, pp. 428–441, Jun. 2018, doi: 10.1016/j.jddst.2018.04.001.
2. J. Sharifi-Rad et al., “Turmeric and Its Major Compound Curcumin on Health: Bioactive Effects and Safety Profiles for Food, Pharmaceutical, Biotechnological and Medicinal Applications,” Front Pharmacol, vol. 11, Sep. 2020, doi: 10.3389/fphar.2020.01021.
3. K. Sulaymanov et al., “Phytochemical analysis of turmeric (Curcuma longa L.) grown in Uzbekistan,” Turkish Journal of Agriculture and Forestry, vol. 48, no. 5, pp. 647–657, Oct. 2024, doi: 10.55730/1300-011X.3209.
4. S. Prasad, D. DuBourdieu, A. Srivastava, P. Kumar, and R. Lall, “Metal–Curcumin Complexes in Therapeutics: An Approach to Enhance Pharmacological Effects of Curcumin,” Int J Mol Sci, vol. 22, no. 13, p. 7094, Jun. 2021, doi: 10.3390/ijms22137094.
5. B. Zheng and D. J. McClements, “Formulation of More Efficacious Curcumin Delivery Systems Using Colloid Science: Enhanced Solubility, Stability, and Bioavailability,” Molecules, vol. 25, no. 12, p. 2791, Jun. 2020, doi: 10.3390/molecules25122791.
6. Q. Hu and Y. Luo, “Chitosan-based nanocarriers for encapsulation and delivery of curcumin: A review,” Int J Biol Macromol, vol. 179, pp. 125–135, May 2021, doi: 10.1016/j.ijbiomac.2021.02.216.
7. N. A. Amyliana and R. Agustini, “Formulation dan Characterization Nanoenkapsulasi Yeast Beras Hitam dengan Metode Sonikasi menggunakan Poloxamer,” UNESA Journal of Chemistry, vol. 10, no. 2, pp. 184–191, 2021.
8. N. Ekapakul, T. Lerdwiriyanupap, T. Siritanon, and C. Choochottiros, “Double network structure via ionic bond and covalent bond of carboxymethyl chitosan and poly(ethylene glycol): Factors affecting hydrogel formation,” Carbohydr Polym, vol. 318, p. 121130, Oct. 2023, doi: 10.1016/j.carbpol.2023.121130.
9. Y. Herdiana, N. Wathoni, S. Shamsuddin, I. M. Joni, and M. Muchtaridi, “Chitosan-Based Nanoparticles of Targeted Drug Delivery System in Breast Cancer Treatment,” Polymers (Basel), vol. 13, no. 11, p. 1717, May 2021, doi: 10.3390/polym13111717.
10. P. Siahaan, N. C. Mentari, U. O. Wiedyanto, D. Hudiyanti, S. Z. Hildayani, and M. D. Laksitorini, “The Optimum Conditions of Carboxymethyl Chitosan Synthesis on Drug Delivery Application and Its Release of Kinetics Study,” Indonesian Journal of Chemistry, vol. 17, no. 2, p. 291, Jul. 2017, doi: 10.22146/ijc.24252.
11. R. Shikuku, M. A. Hasnat, S. B. A. Mashrur, P. Haque, M. M. Rahman, and M. N. Khan, “Chitosan-based pH-sensitive semi-interpenetrating network nanoparticles as a sustained release matrix for anticancer drug delivery,” Carbohydrate Polymer Technologies and Applications, vol. 7, p. 100515, Jun. 2024, doi: 10.1016/j.carpta.2024.100515.
12. R. Yu and S. Li, “Synthesis, Properties, and Applications of Carboxymethyl Chitosan-Based Hydrogels,” 2023, pp. 59–87. doi: 10.1007/12_2023_150.
13. J. Carpenter and V. K. Saharan, “Ultrasonic assisted formation and stability of mustard oil in water nanoemulsion: Effect of process parameters and their optimization,” Ultrason Sonochem, vol. 35, pp. 422–430, Mar. 2017, doi: 10.1016/j.ultsonch.2016.10.021.
14. G. Páez-Hernández, P. Mondragón-Cortez, and H. Espinosa-Andrews, “Developing curcumin nanoemulsions by high-intensity methods: Impact of ultrasonication and microfluidization parameters,” LWT, vol. 111, pp. 291–300, Aug. 2019, doi: 10.1016/j.lwt.2019.05.012.
15. A. Pramudya Wardana et al., “Gynura procumbens NANOENCAPSULATION: A NOVEL PROMISING APPROACH TO COMBAT DENGUE INFECTION,” Journal of Chemistry, vol. 16, no. 02, pp. 0976–0083, 2023, doi: 10.31788/RJC.2023.1628298.
16. B. Nugroho, S. Cahyaningrum, P. Setiarso, A. Wardana, and T. Sucipto, “Biopolymer Nanoencapsulation of Andrographis paniculata (Burm. f.) Nees and Carboxymethyl Chitosan for Dengue Therapy,” Tropical Journal of Natural Product Research, vol. 9, no. 1, Jan. 2025, doi: 10.26538/tjnpr/v9i1.24.
17. J. Zavašnik, A. Šestan, and V. Shvalya, “Microscopic techniques for the characterisation of metal-based nanoparticles,” 2021, pp. 241–284. doi: 10.1016/bs.coac.2021.02.006.
18. Q. Sun et al., “A colorimetric paper based on curcumin-loaded CD-MOFs and CNFs for visual monitoring of strawberry freshness,” Chemical Engineering Journal, vol. 500, p. 157260, Nov. 2024, doi: 10.1016/j.cej.2024.157260.
19. M. R. Mulenos, H. Lujan, L. R. Pitts, and C. M. Sayes, “Silver Nanoparticles Agglomerate Intracellularly Depending on the Stabilizing Agent: Implications for Nanomedicine Efficacy,” Nanomaterials, vol. 10, no. 10, p. 1953, Sep. 2020, doi: 10.3390/nano10101953.
20. T. Udeni Gunathilake, Y. Ching, and C. Chuah, “Enhancement of Curcumin Bioavailability Using Nanocellulose Reinforced Chitosan Hydrogel,” Polymers (Basel), vol. 9, no. 2, p. 64, Feb. 2017, doi: 10.3390/polym9020064.