Pengaruh Variasi Waktu Ekstraksi terhadap Rendemen dan Total Kurkuminoid Ekstrak Etanol 96% Temu Giring (Curcuma heyneana) menggunakan Metode Microwave-Assisted Extraction
Isi Artikel Utama
Abstrak
Penelitian ini bertujuan untuk mengetahui pengaruh variasi waktu ekstraksi terhadap rendemen dan kadar total kurkuminoid ekstrak etanol 96% temu giring (Curcuma heyneana) menggunakan metode Microwave-Assisted Extraction (MAE). Proses ekstraksi dilakukan dengan empat variasi waktu yaitu 20, 60, 120, 150 detik menggunakan microwave 800 watt dengan perbandingan pelarut 1:10 (b/v). Rendemen dihitung berdasarkan total padatan, sedangkan kadar total kurkuminoid ditetapkan menggunakan spektrofotometri UV-Vis pada panjang gelombang maksimum469 nm. Hasil penelitian menunjukkan peningkatan rendemen dari 2.40% (20 detik) menjadi 7.52% (150 detik) dan kadar kurkuminoid dari 2.3962 µg/mL menjadi 5.9593 µg/mL. Analisis statistik menunjukkan perbedaan signifikan antar perlakuan (****p < 0,0001). Waktu 150 detik merupakan kondisi optimum karena mampu memaksimalkan ruptur sel dan difusi pelarut tanpa menurunkan stabilitas termal kurkuminoid. Dengan demikian, durasi ekstraksi menjadi faktor kunci dalam optimasi ekstraksi temu giring berbasis teknologi hijau.
Unduhan
Rincian Artikel

Artikel ini berlisensi Creative Commons Attribution 4.0 International License.
Referensi
[1] P. Sugita, S. O. Firdaus, A. Ilmiawati, and D. U. C. Rahayu, “Curcumenol: A Guaiane-Type Sesquiterpene from Indonesian Curcuma heyneana Rhizome and it’s Antibacterial Activity Towards Staphylococcus Aureus and Escherichia Coli” Journal of Chemical and Pharmaceutical Research, vol. 10, no. 6, pp. 68-75, 2018.
[2] M. I. Sulistyowaty, F. A. Fajrin, M. R. F. Pratama, D. Setyawan, A. W. Indrianingsih, G. S. Putra, S. A. H. Zidan, T. Yamauchi, and K. Matsunami, “Anti-inflammatory Potential of Curcuma heyneana: An in vitro and in silico Investigation,” Pharmacia, vol. 71, pp. 1–11, 2024, doi: 10.3897/pharmacia.71.e120886.
[3] F.A. Fajrin, M. I. Sulistyowaty, M. L. Ghiffary, S. A. Zuhra, W. R. Panggalih, D. K. Pratoko, F. M. Christianty, K. Matsunami, and A. W. Indrianingsih, “Immunomodulatory Effect from Ethanol Extract and Ethyl Acetate Fraction of Curcuma heyneana Valeton and Zijp: Transient Receptor Vanilloid Protein Approach,” Heliyon, vol. 9, no. 5, 2023, Art. no. e15582, doi: 10.1016/j.heliyon.2023.e15582.
[4] C. F. Santoso, D. R. Rahmawati, N, Nugraheni, M. R. P. Adisusilo, D. Maharani, A. Hermawan, and E. Meiyanto, “Chemopreventive Properties Curcuma heyneana Rhizome Ethanolic Extract on Hepatocellular Carcinoma Cells, JHH-4,” Indonesian Journal of Cancer Chemoprevention, vol. 15, no. 1 pp. 40 – 49, 2024, doi:
10.14499/indonesianjcanchemoprev15iss1pp40-49
[5] S. Sugiandi, K. Afriani, A. Hamidi, dan G. Maulia, “Pengaruh Pelarut dan Jenis Ekstrak Terhadap Kadar Kurkumin dalam Simplisia Kunyit dan Temulawak secara Spektrofotometri Sinar Tampak,” WARTA AKAB, vol. 45, no. 2, pp. 6-11, 2021, doi: 10.55075/wa.v45i2.48.
[6] A. Septiana, and E. Wuryatmo, “Effect of Ethanol Concentration and Extraction Time with Microwave Assisted Extraction on Antioxidant Activity of Temulawak-Extract (Curcuma Xanthorrhiza.Roxb),” Journal of Functional Food and Nutraceutical, vol. 3, no. 2, pp. 63–69, 2022, doi: 10.33555/jffn.v3i2.86.
[7] T. D. Beshah, M. A. Fekry Saad, S. E. Gazar, M. A. Farag, “Curcuminoids: A Multi-faceted Review of Green Extraction Methods and Solubilization Approaches to Maximize Their Food and Pharmaceutical Applications,” Advances in Sample Preparation, vol. 13, Feb. 2025, Art. no. 100159, doi: 10.1016/j.sampre.2025.100159.
[8] M. Yaman, S. N. Arslan, G. Gençay, E. Nemli, M. Y. Peker, F. B. Şen, E. Capanoglu, M. Bener, and R. Apak, “Optimization and Modeling of Ultrasound‐ and Microwave‐Assisted Extraction of Turmeric to Efficiently Recover Curcumin and Phenolic Antioxidants Followed by Food Enrichment to Enhance Health‐Promoting Effects,” Food Science & Nutrition, vol. 13, no. 3, 2025, Art. no. e70093, doi: 10.1002/fsn3.70093.
[9] A. A. Bin Mokaizh, A. H. Nour, & C. I. Ukaegbu, “Microwave-Assisted Extraction of Phenolic Compounds from Commiphora gileadensis Leaf and Their Characterization,” Results in Engineering, vol. 24, 2024, Art. no. 102892, doi: 10.1016/j.rineng.2024.102892.
[10] F. Chemat, N. Rombaut, A. G. Sicaire, A. Meullemiestre, A. S. Fabiano-Tixier, And M. Abert-Vian, “Ultrasound Assisted Extraction of Food and Natural Products. Mechanisms, Techniques, Combinations, Protocols and Applications. A review,” Ultrasonics Sonochemistry, vol 34, pp. 540–560, 2017, doi: 10.1016/j.ultsonch.2016.06.035.
[11] Z. Ciğeroğlu, M. Bayramoğlu, Ş. İ. Kırbaşlar, & S. Şahin, "Comparison of Microwave-Assisted Techniques for the Extraction of Antioxidants from Citrus paradisi Macf. Biowastes," Journal of Food Science and Technology, vol 58, no. 3, pp. 1190–1198, 2021, doi: 10.1007/s13197-020-04632-x.
[12] M. Jurić, N. Golub, E. Galić, K. Radić, L. Maslov Bandić, and D. Vitali Čepo, "Microwave-Assisted Extraction of Bioactive Compounds from Mandarin Peel: A Comprehensive Biorefinery Strategy," Antioxidants, vol. 14, no. 6, 2025, doi: 10.3390/antiox14060722.
[13] H. López-Salazar, B. H. Camacho-Díaz, M. L. A. Ocampo, A. R. Jiménez-Aparicio, "Microwave-Assisted Extraction of Functional Compounds from Plants: A Review," BioResources, vol. 18, no. 3, pp. 6614-6638, 2023, doi: 10.15376/biores.18.3.Lopez-Salazar.
[14] K. K. Majumder, J. B. Sharma, M. Kumar, S. Bhatt, and V Saini, “Development and Validation of UV-Visible Spectrophotometric Method for The Estimation of Curcumin in Bulk and Pharmaceutical Formulation,” Pharmacophore, vol. 11, no. 1, pp. 115-121, 2020.
[15] A. Sahal, A. Hussain, R. Mishra, S. Pandey, A. Dobhal, W. Ahmad, V. Kumar, U. C. Lohani, and S. Kumar, “Microwave-assisted Extraction of Bioactive Compounds from Urtica dioica using Solvent-based Process Optimization and Characterization,” Scientific Reports, vol. 15, no. 1, 2025, Art. no. 25375, doi: 10.1038/s41598-025-09855-6
[16] R. Samanta, and M. Ghosh, “Optimization of Microwave-assisted Extraction Technique for Flavonoids and Phenolics from the Leaves of Oroxylum indicum (L.) Kurtz Using Taguchi L9 Orthogonal Design,” Pharmacognosy Magazine, vol. 19 no. 1, pp. 97–104. 2023, doi: 10.1177/09731296221137407.
[17] R. A. Sharma, et al., “Curcumin Content and its Quantification: A Review,” Critical Reviews in Food Science and Nutrition, vol. 55, no. 7, pp. 929–957, 2015, doi: 10.1080/10408398.2012.692736.
[18] R. Singh, et al., “Analytical Methods for Estimation of Curcumin in Turmeric,” Journal of Applied Pharmaceutical Science, vol. 9, no. 6, pp. 124–132, 2019, doi: 10.7324/JAPS.2019.90616.
[19] D. Iswandono, et al., “Validasi metode spektrofotometri UV untuk analisis kurkumin dalam methanol,” Jurnal Farmasi Indonesia, vol. 13, no. 2, 2018.
[20] Z. Ding, et al., “Solvent Effect on The Spectrophotometric Determination of Curcumin,” Food Chemistry, vol. 310, 2020, Art. no. 125974, doi: 10.1016/j.foodchem.2019.125974.
[21] H. T. Nguyen, et al., “Spectrophotometric Determination of Curcumin: Effect of pH and Stability,” Analytical Letters, vol. 54, no. 10, pp. 1675–1687, 2021, doi: 10.1080/00032719.2020.1817610.
[22] F. Galimany-Rovira, P. Pérez-Lozano, E. García-Montoya, M. Miñarro-Carmona, J. R. Ticó-Grau, and J. M. Suñé-Negre, “Optimization and Validation of a Fast UPLC Method for Simultaneous Determination of Hydroquinone, Kojic Acid, Octinoxate, Avobenzone, BHA, and BHT,” Journal of AOAC INTERNATIONAL, vol. 100, no. 1, pp. 1–7, 2017, doi: 10.5740/jaoacint.16-0104.
[23] H. T. Nguyen, et al., “Spectrophotometric Determination of Curcumin: Effect of pH and Stability,” Analytical Letters, vol. 54, no. 10, pp. 1675–1687, 2021, doi: 10.1080/00032719.2020.1817610.